

Leading | Protecting | Enhancing

EU EAA Soil Sampling & Analysis Scheme: Soil and Catchment modelling

Alex Higgins, Rachel Cassidy, Phil Jordan, Ian Thomas, John Bailey

afbini.gov.uk

Scheme overview

Headline results and modelling nutrient loss

Conclusions

To provide eligible livestock farmers with detailed information on their soils so that they can apply nutrients and lime in accordance with crop requirements and thus:

Improve Profitability:

- Increased Grass and Forage yields
- Optimized Soil Fertility pH, P & K
- Optimized distribution of Manure Nutrients and prevent over or under-supplies of nutrients

Improve the Environment: - Reducing Risk of Nutrient Loss to water-bodies

Improve sustainability at field \rightarrow farm \rightarrow catchment scales

Objectives

Objectives addressed by:

- Providing free whole-farm soil sampling
- Analysis and results provided through an accredited laboratory – results tailored to NI requirements
- Free training on soil report interpretation and nutrient management
- LiDAR mapping of the catchment to produce nutrient loss risk maps.

EU EAA Scheme

The EU EAA Scheme had two Components: (totalling approximately 20,000 fields)

1 - The Open Scheme

522 farms participated

12,600 fields sampled

AGRI-FOOD

22,200 ha sampled

afb

Dots are a graphical representation only - and are not indicative of specific farm locations

EU EAA Scheme

2 - The Catchment Scheme – 11 sub-catchments of the Upper Bann River system

513 farms participated 7,300 fields sampled 11,500 ha sampled

Dots are a graphical representation only - and are not indicative of specific farm locations

Results – Catchment Scheme

Soil pH Target:

pH 6.0 - Continuous Grassland on Mineral Soil

pH 5.3 – Continuous Grassland on Peaty Soil

pH is the most important soil parameter, ensuring that the soil environment is optimal for production.

 40% of the grassland area found to require lime and potentially loosing significant dry matter production

FARM ENTERPRISE TYPE

Results – Catchment Scheme

Soil available Potassium - K: Target: Soil Index 2-

 Index 2- range (121-180mg l⁻¹) optimal to maximize grass utilization of nitrogen but avoid luxury uptake of K

42% of the tested grassland area fell below Index 2-

 Soils at K Index >3 are too high and could trigger animal health problems (grass tetany and milk fever)

2% tested grassland area found to be above Index 3

Results – Catchment Scheme

Soil available Phosphorus - P:

Target: Soil Index 2

Intensively managed grassland soil P should be maintained at Olsen Index 2+ (21-25 mg P I⁻¹) on more extensively managed grassland P should be Olsen Index 2- (16-20 mg P I⁻¹)

- **34%** tested grassland area found to be at the target Index 2
- **38%** tested grassland area found to be above Index 2

Catchment Scheme - P

Crop excess soil P is an issue because:-

- P is a growth limiting nutrient in aquatic systems
- Soils found to be at or above Olsen Index 3 have been shown to loose higher rates of P, primarily through surface processes
- The distribution of excess soil P is spatially uneven throughout the catchment
- To focus on the potential management of this issue LiDAR imagery was obtained for the catchment

Catchment Scheme – P - LiDAR

- Detailed 4-6 points per m² with associated elevation data
- This allows the production of a seamless water flow computer model for the catchment
- Identification of those areas where overland flow generation will take place -Hydrologically Sensitive Areas

Catchment Scheme – P - LiDAR

Hydrologically Sensitive Areas – HSA

- Zones of prolonged saturation and ephemeral surface water accumulation

- Primary route for surface delivery of dissolved and suspended nutrients to aquatic systems

Catchment Scheme – P - LiDAR

Identification of Hydrologically Sensitive Areas (HSA) allowed the production of nutrient loss risk maps

- Sub-field identification of risky areas
- Identify target areas for mitigation measures (interception)
- Avoid blanket measures

AFBI have an established water chemistry sampling network within the Upper Bann sub-catchments

- Fortnightly sampling in 13 sub-catchments
- Examine relationships between in-stream P (SRP) and soil and runoff risk distributions for the catchments

 $_{\circ}\,$ Annual median SRP in the measured catchments ranges from 8.5 to 145 μg P L^{-1}

Strong seasonal variation

As the catchments dry out in summer the SRP concentration increase significantly.

afb

AGRI-FOOI & BIOSCIE

AFBI have an established water chemistry sampling network within the Upper Bann sub-catchments

- Fortnightly sampling in 13 sub-catchments
- Examine relationships between in-stream P (SRP) and soil and runoff risk distributions for the catchments
- Linear relationship between in-stream SRP and proportion of catchment above Olsen P Index 2
- Threshold SRP to avoid eutrophication <15% of subcatchment above Olsen P Index 2

- Power relationship between area with high soil test P and runoff risk and SRP concentration in-stream.
- Catchments with high HSA & >optimum soil P will require reduction to ~1.5% of sub-catchment

< Optimum STP Optimum > Optimum

a

25% highest HSA riskDrainage network

SRP v HSA & Above Olsen P Index 2

Conclusions

- Highly successful scheme, over 70% participation we would like to thank again all the participating farmers for allowing AFBI to collect this highly useful data.
- Sustainable increase in quality and quantity of grass could be achieved through correcting sub-optimal soil pH (40% of grassland tested) and soil K status (42% of grassland tested).
- Soil P levels excessive to plant requirement are a concern because of their potential impact on aquatic systems (38% of grassland tested Olsen >Index 2).
- Water sampling indicates a strong relationship to the proportion of the catchment with excess soil P levels and HSAs in combination with excess soil P in relation to overall river water quality.
- Soil nutrient and runoff risk mapping can be a potentially useful tool to target and manage nutrients at farm scale, both to protect the environment and conserve a valuable nutrient.
 AGRI-FOOD AGRI-FO

