Department of Animal Sciences Institute for Food, Nutrition and Health

NUTRIENT COMPOSITION OF MILK, DAIRY AND PLANT-BASED ALTERNATIVES AND IMPLICATIONS FOR CONSUMERS' DIETS

Dr Sokratis Stergiadis Associate Professor in Animal Science

Department of Animal Sciences & Institute for Food, Nutrition and Health

Copyright University of Reading

Photos from: pixabay

correspondence: <u>s.stergiadis@reading.ac.uk</u>

MILK IN HUMAN NUTRITION

General

As a part of human nutrition, milk shows profound characteristics:

- Milk has been traditionally considered as a basic food in many diets, mainly due to its **nutrient-dense character**
- It is the most complete single food available
- It contains numerous beneficial compounds for human health
- It can be transformed to a wide range of dairy products

MILK IN HUMAN NUTRITION

Macronutrients

Percentage (%) contribution of milk and dairy products to average macronutrient intakes by years and age

		Children 1.5-3	Children 4-10	Adolescents 11-18	Adults 19-64	Adults 65-74	Adults 75+
Er	nergy	23.8	13.7	9.6	9.1	10.8	12.8
Pr	otein	31.0	19.5	13.3	13.1	15.0	18.5
Fa	at	32.2	17.7	13.1	12.6	15.1	17.2
•	SFA	44.7	28.4	21.2	20.7	24.3	26.0
•	trans	51.4	38.8	29.4	29.7	34.2	35.3
•	MUFA	24.3	11.6	8.6	8.6	10.5	12.2
•	n-3 PUFA	11.5	5.1	3.9	3.7	4.2	5.1
•	n-6 PUFA	10.0	4.1	3.4	3.1	3.6	4.4
Са	arbohydrates	15.6	9.4	6.4	6.0	7.0	8.4
Fr	ee Sugars	19.8	13.6	8.6	7.5	9.5	8.0
Fi	ore	3.2	1.9	2.1	1.8	1.6	1.6

National Diet and Nutrition Survey (NDNS). Results from Years 9-11 (combined) of the Rolling Programme (2016/17 to 2018/19)

MILK IN HUMAN NUTRITION

Minerals and vitamins

Percentage (%) contribution of milk and dairy products to average micronutrient intakes by years and age														
	Children 1.5-3	Children 4-10	Adolescents 11-18	Adults 19-64	Adults 65-74	Adults 75+								
Iodine ¹	64.0	50.7	40.0	32.3	34.2	41.4								
Calcium ¹	59.3	44.1	34.2	34.2	38.9	43.9								
Phosphorus ^{2,3}		32.0	24.0	23.0										
Zinc ¹	34.6	21.3	15.2	14.7	16.4	20.1								
Potassium ¹	29.7	18.5	13.0	10.7	11.6	15.9								
Magnesium ¹	25.1	15.8	11.3	9.5	10.4	14.0								
Sodium ¹	20.0	11.7	9.0	9.5	11.7	12.2								
Selenium ¹	19.4	11.1	7.3	6.4	7.4	8.6								
Iron ¹	5.7	2.8	2.7	2.2	1.9	2.3								
Vitamin A ¹	35.5	23.0	19.3	14.8	14.8	16.5								
Riboflavin (B2)1	54.0	39.4	29.1	26.6	29.6	35.7								
Folic acid (B9) ¹	19.9	11.9	8.7	8.1	9.0	11.4								
Vitamin D ¹	30.5	17.0	9.3	7.8	6.5	8.1								

¹ National Diet and Nutrition Survey (NDNS). Results from Years 9-11 (combined) of the Rolling Programme (2016/17 to 2018/19)

² McAlister et al. 2020 Pediatr Nephrol 35:501-518 (results adapted from NDNS 1995 & 2000)

³ Henderson et al. 2003. NDNS: adults aged 19 to 64 years, Volume 3 Vitamin and mineral intake and urinary analytes. London: TSO.

Photo from: pixabay

WHY PEOPLE REDUCE MILK INTAKE

Main drivers

- Cows' milk is the most common allergen in early childhood (2.2-3.5% children)¹
- Lactose intolerance prevalence (8% in the UK)²
- Perceived opportunity for improved health, primarily originating from media information³
- 48% of British consumers view reducing consumption of animal products as a good way to lessen humans' impact on the environment⁴
- Beliefs for dairy farm practices contributing to animal mistreatment and reduced animal care⁵

¹ Gray et al. 2014, South African Medical Journal 105:68-69; Villa et al. 2018, Comprehensive Reviews in Food Science and Food Safety 17:137-164. ² Storghaus et al. 2017, The Lancet Gastroenterology & Hepatology 10:738-746. ³ Miki et al. 2020, Current Developments in Nutrition 4:nzaa013; Makinen et al. 2016, Critical Reviews in Food Science and Nutrition. ⁴ Mintel 2020. UK Meat-Free Foods Market Report. ⁵ McCarthy et al. 2017. Journal of Dairy Science 100:6125-6138.

Reading THE RISE OF PLANT-BASED ALTERNATIVES

United Kingdom

From 2004 to 2020 UK consumption of PBDA¹:

- Nearly ×3, from 23 to 68 ml/person/week
- From 1.4% to 5.2% compared to cow milk ۲
- Relatively small market but steadily increasing

23% of people used PBDAs in Dec'18-Feb'19²

Photo from: pixabay

University of

¹DEFRA Family Food Statistics collection (updated 27/01/2022). Adjusted National Food Survey data 1974 to 2000, Expenditure and Food Survey 2001-02 to 2007 and Living Costs and Food Survey 2008 onwards. Food & Trade Statistics Branch.² Mintel. Added value in dairy drinks, milk and cream

Europe Market value of dairy alternatives in Europe¹

From 2014 to 2025 the market value:

- Increased up to ×4.7 for certain PBDA
- 1.5% compared to dairy in 2020 dairy: 148 billion in 2020²
- 2.6% compared to dairy in 2026 dairy: 173 billion in 2026²
- Relatively small market but steadily increasing

BUT... what happens to nutrient intakes when we replace the most nutrient dense single food in our diets?

> Photo from: Pexels

University of

¹ Statista estimates; The Vegan Society; Food ingredients Europe. Published by Statista (2021) ID1220817. https://www.statista.com/statistics/1220817/marketfor-dairy-alternatives-in-europe/ ² EMR (2020) https://www.expertmarketresearch.com/reports/europe-dairy-market

Reading THE RISE OF PLANT-BASED ALTERNATIVES

Department of Food & Nutritional Sciences Institute for Food, Nutrition and Health Department of Animal Sciences

A COMPARATIVE ASSESSMENT OF THE NUTRITIONAL COMPOSITION OF DAIRY AND PLANT-BASED DAIRY ALTERNATIVES AVAILABLE IN THE UK AND THE IMPLICATIONS FOR CONSUMERS' DIETARY INTAKES

Miriam E. Clegg^{a,b}, Ariana T. Ribes^a, Reece Reynolds^a, Kirsty Kliem^c, <u>Sokratis Stergiadis^c</u>

- ^a Department of Food and Nutritional Sciences, University of Reading, UK
- ^b Institute for Food, Nutrition and Health, University of Reading, UK
- ^c Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, UK

Copyright University of Reading

Photos from: pixabay

correspondence: <u>m.e.clegg@reading.ac.uk</u>; <u>s.stergiadis@reading.ac.uk</u>

Food Research International 148 (2021) 110586

Contents lists available at ScienceDirect

Food Research International

journal homepage: www.elsevier.com/locate/foodres

Miriam E. Clegg ^{a, c, *}, Ariana Tarrado Ribes ^a, Reece Reynolds ^a, Kirsty Kliem ^{b, c}, Sokratis Stergiadis ^{b, c, *}

^b Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, New Agriculture Building, Earley Gate, PO Box 237, Reading RG6 6EU, UK

^c Institute for Food, Nutrition and Health, University of Reading, Whiteknights, Reading RG6 6AH, UK

^a Department of Food and Nutritional Sciences, Harry Nursten Building, University of Reading, Whiteknights, Reading RG6 6DZ, UK

The objectives of the present study were to:

- Compare the label nutrient composition of dairy products and equivalent PBDAs (milk, yogurt and cheese alternatives)
- Model the impact on nutrient intakes from the consumption of dairy products or their substitution with PBDAs for the different age and gender consumer segments.

MATERIALS AND METHODS

Product selection

- Online 6 supermarkets >73% of market share in 2020
- All available PBDA and the equivalent milk, cheese and yogurt products

Categorisation (according to primary ingredient)

- Milk: cow, coconut, grain, legumes, nuts & seeds, mixed
- Yogurt: cow, coconut, nuts, soya
- Cheese: cow, nuts & seeds, oils

Data collection (as in July 2020)

- Price (GBP per 100 g)
- Background info: primary ingredient, processing method, retailer, brand, description, URL
- Nutritional info: energy, macronutrients (fat, saturated fat, carbohydrate, sugar, fibre, protein), minerals (Ca, I, Fe, K), vitamins (B₂, B₁₂, D), salt

Statistical analysis

- ANOVA linear model (REML, GenStat 18th Edition): product type been the fixed effect
- Pairwise comparisons: Fisher's Least Significant Difference test (P < 0.05)

		_ P		ce a	n	a co	om	ipo:	SIT	lon -		IK		Ra
Price and contents o	f ene	ergy an	id n	utrient	of r	etail m	ilk a	nd plar	nt-ba	ased alterr	nativ	es		
	(Cow	Со	conut	G	rains	Le	gumes	Nu	uts/Seeds	Ν	Aixed		
Variable (per 100g)	n	Mean	n	Mean	n	Mean	n	Mean	n	Mean	n	Mean	SE	P-value
Price (£)	50	0.10 ^c	19	0.19 ^{ab}	34	0.18 ^b	26	0.18 ^b	43	0.20 ^a	10	0.19 ^{ab}	0.008	<0.001
Energy (Kcal)	51	50.3ª	21	33.7 ^{cd}	34	48.3 ^{ab}	26	41.2 ^{bc}	44	30.2 ^d	11	45.0 ^{ab}	2.47	<0.001
Protein (g)	51	3.49 ª	21	0.28 ^e	34	0.56 ^{cd}	26	3.08 ^b	44	0.74 ^c	11	0.29 ^{de}	0.067	<0.001
Fat (g)	51	1.91	21	1.88	34	1.35	26	2.11	44	1.83	11	1.39	0.168	0.062
Saturates (g)	50	1.23 ^b	21	1.63ª	34	0.20 ^d	26	0.31 ^{cd}	44	0.20 ^d	11	0.68 ^c	0.077	<0.001
Carbohydrates (g	51	4.77 ^b	21	3.70 ^{bc}	34	8.21ª	26	2.19 ^d	44	2.61 ^{cd}	11	7.72ª	0.400	<0.001
Sugars (g)	50	4.75ª	21	2.28 ^b	34	4.74ª	26	1.42 ^b	44	1.56 ^b	11	5.00ª	0.273	<0.001
Fibre (g)	33	0.00 ^c	21	0.16 ^{bc}	33	0.56ª	26	0.52ª	43	0.27 ^b	10	0.09 ^{bc}	0.050	<0.001
Salt (g)	50	0.11	21	0.12	34	0.10	26	0.13	44	0.11	11	0.10	0.008	0.459
Calcium (mg)	30	124	13	108	18	120	22	111	23	115	5	120	5.1	0.547
Potassium (mg)	4	163	2	117	4	151							7.4	0.056
lodine (μg)	4	31.3ª	1	13.0 ^b	*	*	5	26.3ª	*	*	*	*	1.11	0.006
Iron (g)	*	*	3	0.17	*	*	5	1.38	2	0.20	*	*	0.241	0.102
Vitamin B2 (mg)	4	0.24 ^b	1	0.50 ^a	11	0.21 ^c	16	0.21 ^c	13	0.21 ^c	3	0.21 ^c	0.000	<0.001
Vitamin B12 (µg)	15	0.79 ^a	10	0.39 ^b	16	0.38 ^b	18	0.44 ^b	19	0.38 ^b	5	0.38 ^b	0.023	<0.001
Vitamin D (µg)	*	*	10	0.75	16	1.03	18	0.91	19	0.83	5	0.90	0.077	0.150
Vitamin E (mg)	*	*	1	3.60	*	*	*	*	13	1.56	*	*	0.085	<0.001

Compared to most (when

not all), cows' milk is:

Higher in energy,

protein, sugars,

- iodine, B₁₂, E
- Lower in fibre
- Cheaper

•

Grains: oat, rice, rice/quinoa; **Legumes:** soya, pea; **Nuts/Seeds:** almond, hazelnut, cashew, tiger nut, walnut, almond/hazelnut; **Mixed:** any combination of the others Different lower-case letters within a row indicate significant differences (Fisher's Least Significant Difference test; P < 0.05) Photos from: pixabay

Price and composition - Yogurt

Price and contents of and plant-based alto	of e erna	nergy a atives	ind	nutrien	t of	retail y	/ogi	urt		
		Cow	Сс	oconut	ſ	luts	S	Soya		
Variable (per 100g)	n	Mean	n	Mean	n	Mean	n	Mean	SE	P-value
Price (£)	78	0.30 ^d	10	0.55 ^b	10	0.87ª	35	0.44 ^c	0.026	<0.001
Energy (Kcal)	78	83.3 ^b	10	111.7ª	10	96.8 ^{ab}	35	68.4 ^c	3.33	<0.001
Protein (g)	78	5.32 ^a	10	0.82 ^c	10	1.89 ^c	35	3.93 ^b	0.150	<0.001
Fat (g)	78	3.26 ^b	10	6.17ª	10	6.69 ^a	35	2.25 ^b	0.331	<0.001
Saturates (g)	78	2.14 ^b	10	6.14 ^a	10	1.17 ^{bc}	35	0.40 ^c	0.252	<0.001
Carbohydrates (g)	78	8.13 ^b	10	11.57ª	10	6.43 ^b	35	7.05 ^b	0.535	0.003
Sugars (g)	78	7.58 ^a	10	7.80 ^a	10	2.71 ^b	35	6.71 ^a	0.532	<0.001
Fibre (g)	45	0.10 ^c	8	0.35 ^b	8	0.13 ^{bc}	35	1.03 ^a	0.060	<0.001
Salt (g)	78	0.16 ^b	10	0.24 ^a	10	0.22 ª	35	0.20 ^a	0.014	0.003
Calcium (mg)	44	154ª	6	128 ^{ab}	0		32	111 ^b	5.3	<0.001
Vitamin D (µg)	0		6	0.75	0		26	0.76	0.026	0.932
Vitamin B12 (µg)	0		6	0.38	0		25	0.37	0.005	0.310

Compared to most (when not all),

cows' yogurt is:

- Higher in protein, sugars, Ca
- Lower in fat, fibre, salt
- Cheaper

Nuts: almond, cashew. Different lower-case letters within a row indicate significant differences (Fisher's Least Significant Difference test; P < 0.05)

Photos from: pixabay

Price and composition - Cheese

Price and contents of	of e	nergya	and n	utrient	of re	etail ch	eese	
and plant-based alt	ern	atives						
		Cow	Nuts	Seeds		Oils		
Variable (per 100g)	n	Mean	n	Mean	n	Mean	SE	P-value
Price (£)	38	0.76 ^c	7	2.52ª	102	1.29 ^b	0.072	<0.001
Energy (Kcal)	38	313 ^a	6	241 ^c	102	284 ^b	5.9	<0.001
Protein (g)	38	16.6ª	6	6.5 ^b	102	1.1 ^c	0.48	<0.001
Fat (g)	38	26.0 ^a	6	21.0 ^b	102	22.9 ^b	0.63	0.003
Saturates (g)	37	17.4 ^b	6	2.1 ^c	102	19.2ª	0.42	< 0.001
Carbohydrates (g)	38	1.80 ^b	6	5.42 ^b	102	17.58ª	0.668	<0.001
Sugars (g)	37	1.52ª	6	2.48ª	102	0.62 ^b	0.206	< 0.001
Fibre (g)	25	0.25 ^b	3	2.47 ª	46	3.17ª	0.222	<0.001
Salt (g)	37	1.10 ^b	6	1.25 ^{ab}	102	1.77 ^b	0.077	<0.001
Calcium (mg)	7	652 ^a	0		21	353 ^b	64.7	0.027

Compared to most (when not all),

cows' cheese is:

- Higher in energy, protein, fat, Ca
- Lower in carbohydrates and fibre
- Cheaper

Nuts/Seeds: almond, sunflower, cashew; Oils: coconut, soybean, palm.

Different lower-case letters within a row indicate significant differences (Fisher's Least Significant Difference test; P < 0.05)

Implications to UK consumers

Official Statistics NDNS: results from years 7 and 8 (combined)

Results of the National Diet and Nutrition Survey (NDNS) rolling programme for 2014 to 2015 and 2015 to 2016.

From:
Published:

Last updated:

<u>Public Health England</u> and <u>Food Standards Agency</u> 16 March 2018 11 April 2018, see all updates

Documents

NDNS results from years 7 and 8 (combined)

Ref: PHE publication gateway reference 2017851 PDF, 436KB, 29 pages

This file may not be suitable for users of assistive technology.

Request an accessible format.

Milk/dairy intakes (g/d) for the different UK consumer demographics from NDNS

×

Mean nutrient concentrations (mg/kg

milk) as described in product label

Photo from: pixabay

Nutrient intakes (mg/d) for the different UK consumer

demographics

% contribution of milk/dairy vs PBDA in reference nutrient intakes (RNI)

Implications to protein intakes in consumers

Impact on consumers' protein intakes when MILK is replaced by plant-based alternatives (P<0.001)

	Co)W ^a	Coc	onut ^e	Gr	ains ^c	Legu	umes ^b	Nuts & S	Seeds	Mix	xed ^d
Age (years)	g/d	%RNI	g/d	%RNI	g/d	%RNI	g/d	%RNI	g/d	%RNI	g/d	%RNI
Children 1.5-3	8.4	58.0	0.7	4.7	1.3	9.2	7.4	51.2	1.8	12.3	0.7	4.8
Children 4-10	5.9	24.5	0.5	2.0	0.9	3.9	5.2	21.6	1.2	5.2	0.5	2.0
Children 11-18	4.6	10.0	0.4	0.8	0.7	1.6	4.1	8.8	1.0	2.1	0.4	0.8
Adults 19-64	4.7	9.3	0.4	0.8	0.7	1.5	4.1	8.2	1.0	2.0	0.4	0.8
Adults 65-74	5.3	7.2	0.4	0.6	0.8	1.1	4.7	6.3	1.1	1.5	0.4	0.6
Adults 75+	6.0	8.2	0.5	0.7	1.0	1.3	5.3	7.2	1.3	1.7	0.5	0.7

 Based on average population intakes based on the National Diet and Nutrition Survey (Years 7-8)

	Impact on con replaced by pl	sume ant-b	rs' pro ased al	tein i terna	intakes atives	s whe (P<0.	n YOGl 001)	JRT i	S	Impact on cons is replaced by	sume plant	rs' prot -based a	ein int alterna	akes wh atives (P	en C⊦ <0.00	IEESE 1)	
		Со	W ^a	Сосо	onut ^b	N	uts ^b	Sc	oya ^b		Сс	ow ^a I	Nuts &	Seeds ^b	0	ils ^b	
1	Age (years)	g/d	%RNI	g/d	%RNI	g/d	%RNI	g/d	%RNI	Age (years)	g/d	%RNI	g/d	%RNI	g/d	%RNI	
	Children 1.5-3	2.32	16.0	0.36	2.5	0.82	5.7	1.71	11.8	Children 1.5-3	0.81	5.6	0.23	1.6	0.04	0.3	5.9
	Children 4-10	2.23	9.3	0.34	1.4	0.79	3.3	1.65	6.9	Children 4-10	0.75	3.1	0.24	1.0	0.04	0.2	

MILK - Grains: oat, rice, rice/quinoa; Legumes: soya, pea; Nuts/Seeds: almond, hazelnut, cashew, tiger nut, walnut, almond/hazelnut; Mixed: any combination of the others. YOGURT - Nuts: almond, cashew. CHEESE - Nuts/Seeds: almond, sunflower, cashew; Oils: coconut, soybean, palm. Different lower-case letters within a row indicate significant differences (Fisher's Least Significant Difference test; P < 0.05)

Implications to saturated fat intakes in adults

Impact on consumers' saturated fat intakes when MILK is replaced by plant-based alternatives (P<0.001)

-

	Cow ^b			onut ^a	Gra	ains ^d	Leg	umes ^c	Nuts & S	beeds ^d	Mi	xed ^c
Age (years)	g/d	%RNI	g/d	%RNI	g/d	%RNI	g/d	%RNI	g/d	%RNI	g/d	%RNI
Adults 19-64	1.6	5.7	2.2	7.5	0.3	0.9	0.4	1.4	0.3	0.9	0.9	3.2
Adults 65-74	1.9	7.4	2.6	9.9	0.3	1.2	0.5	1.9	0.3	1.2	1.0	4.0
Adults 75+	2.1	8.4	2.8	11.1	0.4	1.4	0.5	2.1	0.3	1.2	1.1	4.1

 Based on average population intakes based on the National Diet and Nutrition Survey (Years 7-8)

Impact on cons	npact on consumers' saturated fat intakes when YOGU replaced by plant-based alternatives (P<0.001) Cow ^b Coconut ^a Nuts ^b Soya					GURT	Impact on consu	mers'	saturat	ed fat	intakes wh	nen Cl	HEESE				
is replaced by p	olant-	-based	alte	rnative	s (P<	0.001)			is replaced by plant-based alternatives (P<0.001)								
Cow ^b Coconut ^a Nuts ^b Soya ^b										Со	w ^b	Nuts	& Seeds ^a	0	ils ^b		
Age (years)	g/d	%RNI	g/d	%RNI	g/d	%RNI	g/d	%RNI	Age (years)	g/d	%RNI	g/d	%RNI	g/d	%RNI		
Adults 19-64	0.6	2.0	1.6	5.7	0.3	1.1	0.1	0.4	Adults 19-64	0.08	0.28	0.13	0.45	0.04	0.14		
Adults 65-74	0.9	3.4	2.5	9.7	0.5	1.9	0.2	0.7	Adults 65-74	0.07	0.27	0.12	0.46	0.03	0.12		
Adults 75+ 💧	0.7	2.6	1.9	7.5	0.4	1.4	0.1	0.5	Adults 75+	0.09	0.36	0.14	0.55	0.04	0.16		
	1																

MILK - Grains: oat, rice, rice/quinoa; Legumes: soya, pea; Nuts/Seeds: almond, hazelnut, cashew, tiger nut, walnut, almond/hazelnut; Mixed: any combination of the others. YOGURT - Nuts: almond, cashew. CHEESE - Nuts/Seeds: almond, sunflower, cashew; Oils: coconut, soybean, palm. Different lower-case letters within a row indicate significant differences (Fisher's Least Significant Difference test; P < 0.05)

Implications to iodine intakes in consumers

• Based on average population intakes based on the National Diet and Nutrition Survey (Years 7-8)

Impact on cons	Impact on consumers' iodine intakes when milk is														
replaced by pla	replaced by plant-based alternatives (P=0.006)														
	Cow ^a Coconut ^b Legumes ^a														
Age (years) µg/d %RNI µg/d %RNI µg/d %RNI															
Children 1.5-3	75.4	107.7	31.4	44.8	63.4	90.5									
Children 4-10	52.6	50.1	21.9	20.9	44.2	42.1									
Children 11-18	41.1	30.4	17.1	12.7	34.6	25.6									
Adults 19-64	41.7	29.8	17.3	12.4	35.0	25.0									
Adults 65-74	49.1	35.0	20.4	14.6	41.3	29.5									
Adults 75+	53.8	38.5	22.4	16.0	45.3	32.3									

In the UK population, I deficiency occurs in:

- 23% of women 11-18 years of age
- 10% of women 19+ years of age (*Miller et al., 2016, Nutrition Bulletin 41:14*)
- 14-15 years of age schoolgirls
 51% mild, 16% moderate, 1% severe
 (Vanderpump, 2011, The Lancet, 377:2007)

Those replacing milk, are likely to replace other I sources (fish, shellfish)

- I-fortified foods and PBDAs
- supplements only after consultation with health professional

Legumes: soya, pea; Different lower-case letters within a row indicate significant differences (Fisher's Least Significant Difference test; P < 0.05)

Photos from: pixabay

Implications to vitamin B₁₂ intakes in consumers

• Based on average population intakes based on the National Diet and Nutrition Survey (Years 7-8)

Impact on cons	umers	' vitam	in B ₁₂	when I	milk is	replace	e <mark>d by</mark> I	plant-b	ased alt	ernativ	es (P<(0.001)			
	Со	W ^a	Сосо	onut ^e	Gra	ains ^c	Legu	ımes ^b	Nuts &	uts & Seeds ^c Mixed					
Age (years)	µg/d	%RNI	µg/d	%RNI	µg/d	%RNI	μg/d	%RNI	μg/d	%RNI	µg/d	%RNI			
Children 1.5-3	1.9	382	0.9	188	0.9	184	1.1	214	0.9	184	0.9	184			
Children 4-10	1.3	148	0.7	73	0.6	71	0.8	83	0.6	71	0.6	71			
Children 11-18	1.0	77	0.5	38	0.5	37	0.6	43	0.5	37	0.5	37			
Adults 19-64	1.1	70	0.5	35	0.5	34	0.6	39	0.5	34	0.5	34			
Adults 65-74	1.2	83	0.6	41	0.6	40	0.7	46	0.6	40	0.6	40			
Adults 75+	1.4	91	0.7	45	0.7	44	0.8	51	0.7	44	0.7	44			

Those replacing milk, are likely to replace other B₁₂ sources (meat, salmon, cod, eqqs)

Yeast extract, fortified cereals and supplements are recommended

Grains: oat, rice, rice/quinoa; **Legumes:** soya, pea; **Nuts/Seeds:** almond, hazelnut, cashew, tiger nut, walnut, almond/hazelnut; **Mixed:** any combination of the others. Different lower-case letters within a row indicate significant differences (Fisher's Least Significant Difference test; P < 0.05) Photos from: pixabay

Implications to household expenditure

Assumptions

- Family of four with two young children
- Based on average population intakes based on the National Diet and Nutrition Survey (Years 7-8)
- Switching to the most available alternative (nuts & seeds for milk, soya for yogurt, oils for cheese)

Increase in annual household expenditure by replacing milk with plant-based alternatives (prices in 2021)							
	Cost (£) - Cows			Cost (£) - PBDA 🛛 🥯			
Age (years)	Milk	Yogurt	Cheese	Milk	Yogurt	Cheese	
Child 1.5-3.0	88	48	14	176	70	21	
Child 4-10	61	46	12	123	67	20	
Adult 18-65	49	29	18	97	43	29	
Adult 18-65	49	29	18	97	43	29	
Substitution	Milk		Yogurt		Cheese		Total
Cost	+£247		+£	71	+£38		+£356

CONCLUSIONS & IMPLICATIONS

- Consumers purchase plant-based dairy alternatives (PBDA) either by choice or necessity
- PBDA are not a nutritional replacement of cows' products
- Substitution of milk with PBDA may increase risk of nutrient deficiencies (esp. in nutritionally vulnerable groups)
- High price and exclusion from support schemes may make it unavailable in consumer fragments that need PBDA
- Fortification provides a potential route for targeted improvement of nutritional value
 - Bioavailability to be considered
 - Production regulations barriers (e.g. organic)
 - Price barriers

ACKNOWLEDGEMENTS

Funded by the University of Reading

an Undergraduate Research

from the University of Reading.

Ariana Tarrado Ribes was in receipt of

Opportunities Programme (UROP) grant

FIND OUT MORE...

Food Research International 148 (2021) 110586

Contents lists available at ScienceDirect

Food Research International

journal homepage: www.elsevier.com/locate/foodres

A comparative assessment of the nutritional composition of dairy and plant-based dairy alternatives available for sale in the UK and the implications for consumers' dietary intakes

Miriam E. Clegg ^{a, c,*}, Ariana Tarrado Ribes ^a, Reece Reynolds ^a, Kirsty Kliem ^{b,c}, Sokratis Stergiadis ^{b,c,*}

^a Department of Food and Nutritional Sciences, Harry Nursten Building, University of Reading, Whiteknights, Reading RG6 6DZ, UK

^b Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, New Agriculture Building, Earley Gate, PO Box 237, Reading RG6 6EU, UK

^c Institute for Food, Nutrition and Health, University of Reading, Whiteknights, Reading RG6 6AH, UK