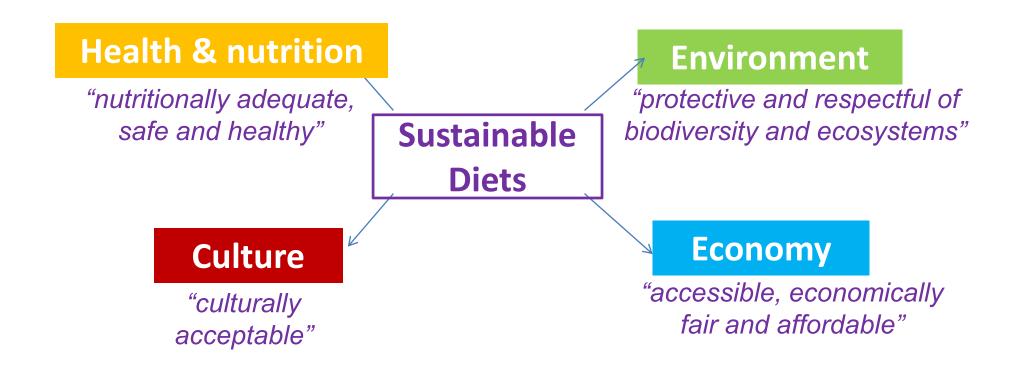
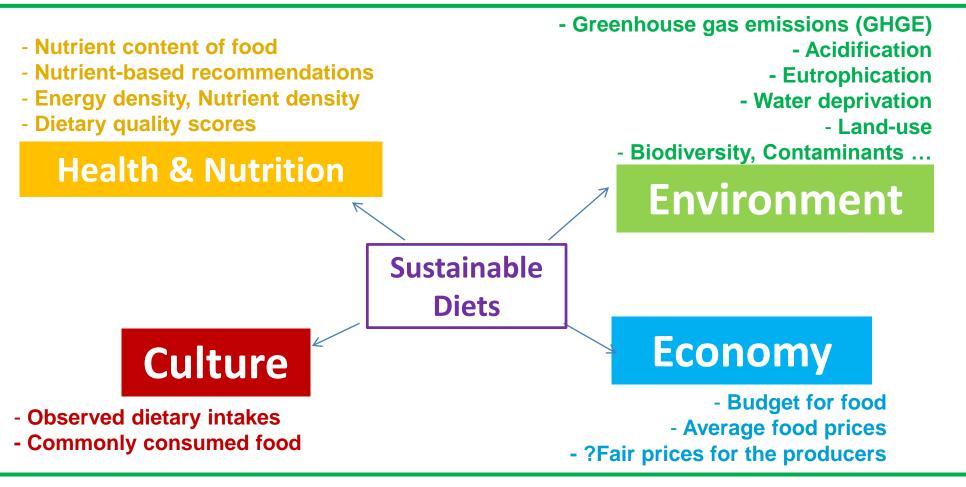
Studying dietary shifts to improve nutrition and sustainability: how do we best measure it?



Nicole Darmon
UMR MOISA, Montpellier

Sustainable diet concept

(FAO, 2010)



Sustainable diets: respect of the 4 dimensions

Sustainable diets metrics

(Gazan et al, Food Chemistry, 2018)

→ Study of sustainable diets made possible by the compilation of multiple sustainable metrics within a single database

Special Article
Advantages and limitations of the methodological approaches
Advantages and limitations of the methodological approaches
to sustainability
Sustainability

Marlène Perignon and Nicole Darmon

Nutr Rev, 2022)

SUSTA

Methods used to explore diet sustainability

n°1: Designing theoretical diets based on a priori scenario

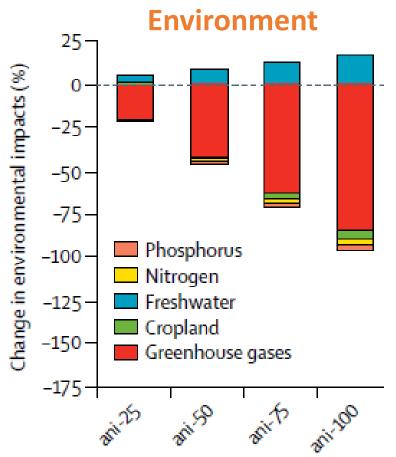
- \Rightarrow Theoretical diets fulfilling a priori scenarios (eg meat replaced by plant products, ...)
- ⇒ Theoretical diets meeting guidelines (eg Mediterranean pyramid, FBDGs, EAT Lancet ...)

n°2: Describing the sustainability characteristics of existing diets

 \Rightarrow Existing diets classified by nutritional quality, by GHGE \dots

n°3: Identifying the best existing diets

 \Rightarrow Positive deviance approach


n°4: Designing theoretical diets without a priori

 $\Rightarrow {\sf Mathematical\ optimization\ of\ diets\ fulfilling\ sustainability\ constraints}$

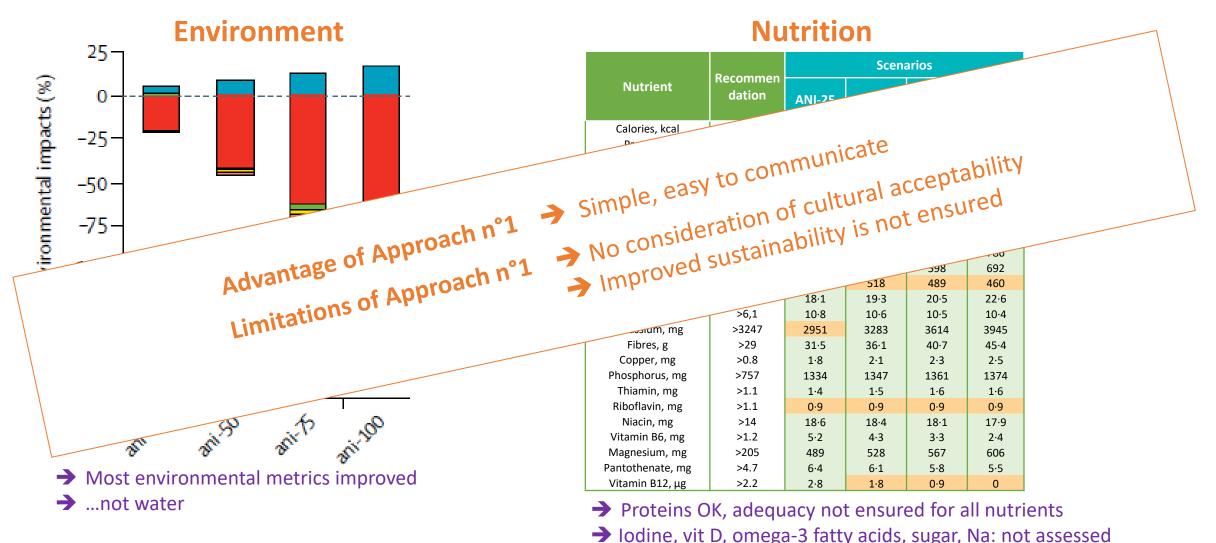
Approach n°1: Designing theoretical diets based on a priori scenario

- ⇒ Theoretical diets fulfilling a priori scenarios (eg meat replaced by plant products, ...)
- ⇒ Theoretical diets meeting guidelines (eg Mediterranean pyramid, FBDGs, EAT Lancet ...)

Example for approach 1: meat replaced by plants (Springmann et al (2018) The Lancet Planetary Health)

- → Most environmental metrics improved
- → But water deteriorated

Nutrition

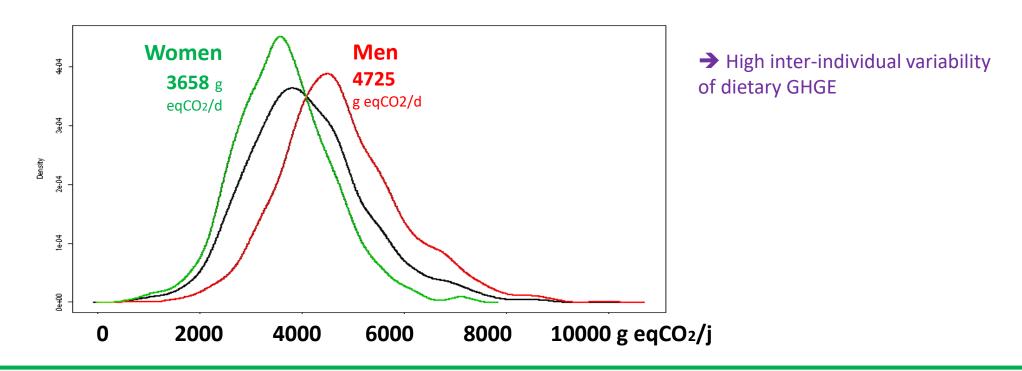

	Recommen dation	Scenarios			
Nutrient		ANI-25	ANI-50	ANI-75	ANI- 100
Calories, kcal	2084	2257	2257	2257	2257
Protein, g	>52	67.9	66∙6	65∙3	64·1
Carbohydrates, g	<391	341	356	371	386
Fat, g		62.7	56∙4	50·1	43.8
SFA, g	<23	19.3	16∙0	12.7	9⋅5
MUFA, g		23.7	20.7	17.7	14.6
PUFA, g	>14	16.7	16·8	16.8	16∙8
Vitamin C, mg	>42	124	147	170	192
Vitamin A, μg	>544	622	680	733	786
Folates, μg	>364	410	504	598	692
Calcium, mg	>520	546	518	489	460
Iron, mg	>17	18·1	19·3	20.5	22.6
Zinc, mg	>6,1	10.8	10∙6	10∙5	10.4
Potassium, mg	>3247	2951	3283	3614	3945
Fibres, g	>29	31.5	36∙1	40∙7	45·4
Copper, mg	>0.8	1.8	2⋅1	2.3	2⋅5
Phosphorus, mg	>757	1334	1347	1361	1374
Thiamin, mg	>1.1	1.4	1.5	1.6	1.6
Riboflavin, mg	>1.1	0.9	0.9	0.9	0.9
Niacin, mg	>14	18-6	18-4	18-1	17-9
Vitamin B6, mg	>1.2	5⋅2	4.3	3.3	2.4
Magnesium, mg	>205	489	528	567	606
Pantothenate, mg	>4.7	6∙4	6·1	5⋅8	5.5
Vitamin B12, μg	>2.2	2⋅8	1.8	0.9	0

- → Proteins OK, adequacy not ensured for all nutrients
- → Iodine, vit D, omega-3 fatty acids, sugar, Na: not assessed

Approach n°1: Designing theoretical diets based on a priori scenario

- ⇒ Theoretical diets fulfilling a priori scenarios (eg meat replaced by plant products, ...)
- \Rightarrow Theoretical diets meeting guidelines (eg Mediterranean pyramid, FBDGs, EAT Lancet ...)

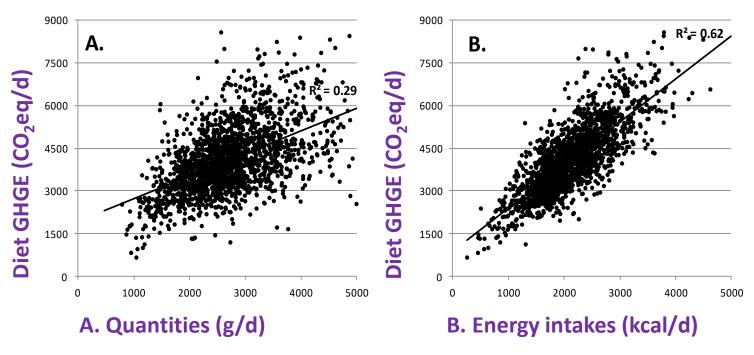
Example for approach 1: meat replaced by plants (Springmann et al (2018) The Lancet Planetary Health)



Approach n°2: Describing sustainability characteristics of existing diets

⇒ Existing diets classified by nutritional quality, by GHGE ...

(Vieux et al, Ecol, Econ 2012)


Example for approach 2: distribution of GHGE of French adults diets

→ Need to understand the determinants of this variability

Example for approach 2: association between quantities (or kcal) and dietary GHGE

(Vieux et al, Ecol, Econ 2012)

- → Strong positive correlation between quantities and GHGE
- → Even stronger correlation between energy intakes and GHGE
- → Need to be clear on the energy content of diets or to adjust for energy content
 → Not always done

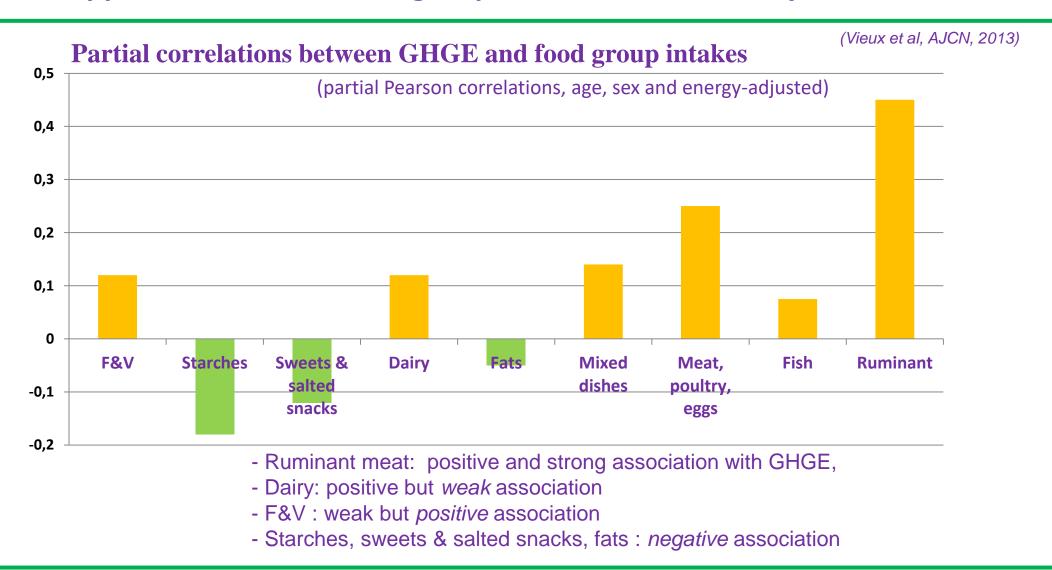
Example for approach 2 (describing existing diets) **determinants of dietary GHGE**

(Vieux et al, AJCN, 2013)

Correlating nutritional quality indicators and dietary GHGE

MAR, Mean Adequacy Ratio = mean % recommended intakes for 20 essential nutrients, per day

MER, Mean Excess Ratio = mean % of maximal recommended values Na, SFA and free sugars, per day


ED, Energy density (solid foods), kcal/100g consumed

	MER	ED	MAR
	Mean Excess	Energy	Mean
	Ratio	Density	Adequacy Ratio
Dietary GHGE	-0.14	-0.33	0.22

(age, sex and energy-adjusted)

→ In self-selected diets, lower nutritional quality associated with lower GHGE

Example for approach 2: role of food groups to determine dietary GHGE

Approach n°2: Describing the sustainability characteristics of existing diets

Advantage of Approach n°2

- → Better consideration of cultural acceptability (existing diets)
- → Better understanding of trade-offs between sustainability dimensions

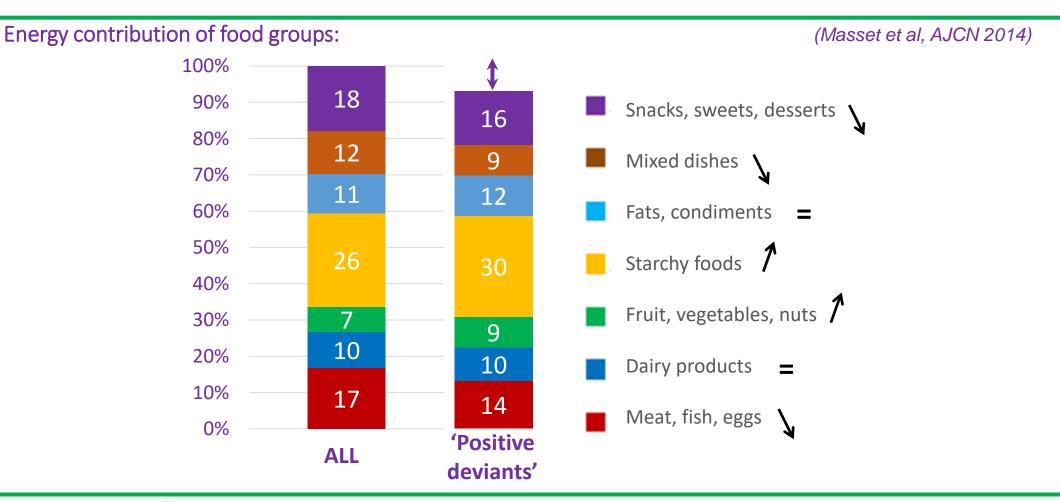
Limitations of Approach n°2

→ Improvement of one sustainability dimension does not ensure improvement of the others (eg, improved nutritional quality not necessarily associated with lower environmental impact)

Improved sustainability can't be ensured with uni-dimensional approaches because sustainability is intrinsically a multi-dimensional concept.

Approach n°3: Identifying the best existing diets

⇒ Positive deviance approach


Example for approach 3

(Masset et al, AJCN 2014) (dietary data from French adults)

- **→ 20%** of self-selected diets identified as 'positive deviants':
 - GHGE reduced by 20% (vs mean)
 - they eat less (minus 200kcal vs mean)
 - they eat diferently

Example for approach 3 (identifying the best existing diets): the French case

- → Higher amount of plant-based products (58% vs 53%*);
- → Lower amount of meat/fish/eggs (due to meat),
- → Dairy products: no difference
- **→** Lower cost (6.2 vs 6.7 €/d)

Example for approach 3 (identifying the best existing diets): **5 European countries**

SUSDIET European project (Sweden, Finland, Italy, UK, France)

(Vieux et al, J Clean Prod 2020)

- → GHGE reduced by 21% (vs mean)
- → Decrease of animal/plant ratio
- → Dairy products unchanged
- → Decrease of: soft drinks, hot drinks, alcoholic drinks

On average, more sustainable existing diets in Europe contained:

1 kg/d of plant-based products

400 g/d animal-based products

- 100 g meat/fish/egg (including 20g ruminant meat),
- 50 g mixed dishes
- 250 g dairy products (incuding 30g cheese)
- To improve sustainability, exclusion of entire categories of foods is not a necessity
 - → Rebalancing plant-based vs animal-based products consumption

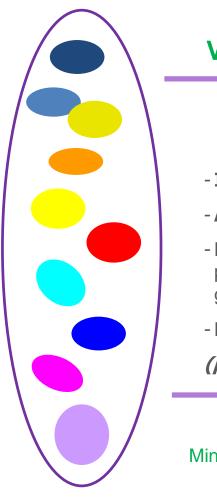
Approach n°3: Identifying the best existing diets (positive deviance)

Advantage of Approach n°3

- Cultural acceptability ensured (existing diets)
- → Improvement of several sustainability dimensions/criteria simultaneously

Limitations of Approach n°3

→ Magnitude of improvements might be too small (eg, improving nutritional quality does not mean reaching nutritional adequacy; reduction of GHGE might be modest...)


Approach n°3: Identifying the best existing diets (positive deviance)

Approach n°4: Designing theoretical diets without a priori

Principle of approach 4: mathematical optimization of diets fulfilling sustainability constraints

(Gazan et al., Adv Nutr, 2018)

VARIABLES (Foods and their weights)

CONSTRAINTS

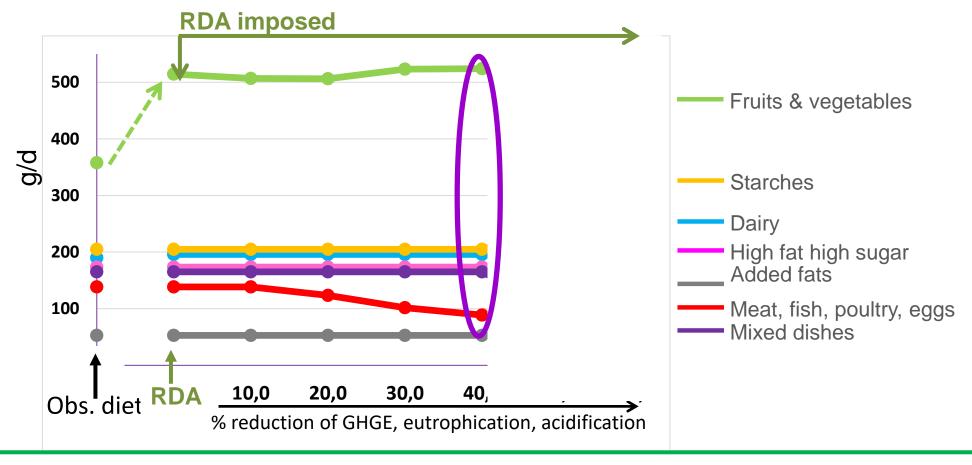
(Requirements for the modeled diet)

- Iso Energy
- All nutritional recommandations
- Realism and acceptability (maximum portion sizes, balance between foodgroups....), based on observed intakes
- **Environ. impact reduction** (10% steps)

(possibly: cost, contaminants, ...)

OBJECTIVE FUNCTION

Minimizing departure from the food and food-group content of the observed diet

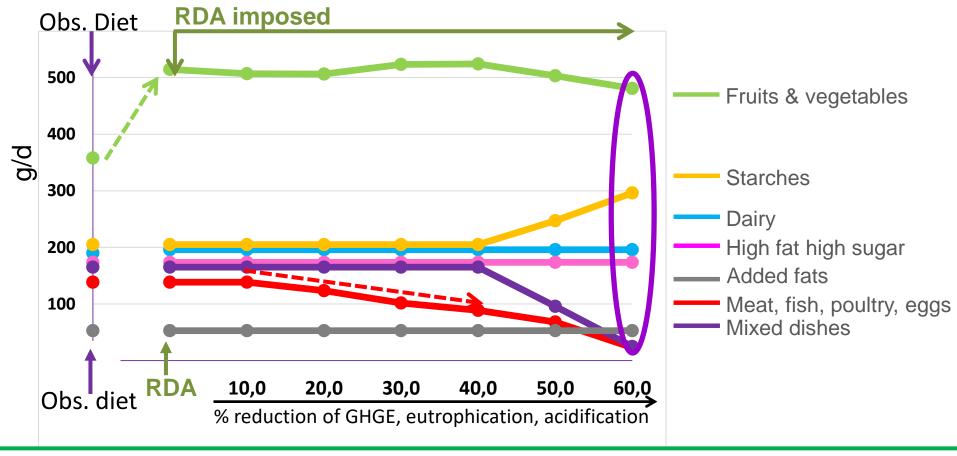


Modeled diet

Example for approach n°4 (designing theoretical diets without a priori): the French case

Food groups in OBSERVED and nutritionally adequate MODELED diets:

(Perignon, Pub Health Nutr, 2016)

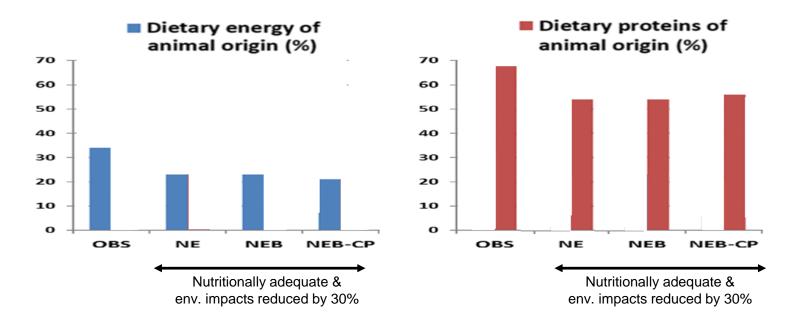


→ Until 30-40% of GHGE reduction, nutritional adequacy can be achieved by changing only the quantities of 2 food groups: important F&V increase; moderate M/F/P/E decrease

Example for approach n°4 (Designing theoretical diets without a priori): the French case

Food groups in OBSERVED and nutritionally adequate MODELED diets:

(Perignon, Pub Health Nutr, 2016)



- → Possible to reduce env. impacts by 60% while achieving nutritional adequacy but requires greater departure from observed intakes:
- → Dairy remained stable, starches began to increase, meat decreasing trend
 - → Similar results with data from 5 european countries (Vieux Eur J Clin Nutr, 2018)

Strength of approach n°4 (theoretical diets without a priori): taking into account complex considerations

(Barré, PLOS one, 2018)

Example: introduction of nutrient Bioavailability (NE-<u>B</u>) and Co-Production links (NEB-<u>CP</u>) in addition to nutrient-based recommendations and 30% reduction environmental impacts (NE models)

- → Whatever the model, energy & proteins from animal origin had to decrease (lower reduction when co-production links were considered)
- → In fact, a recent study shows that 50% of animal proteins are needed for nutritionnal adequacy (Vieux, J Nutr, 2022)

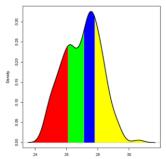
Approach n°4: Designing theoretical diets without *a priori*

Advantage of Approach n°4

- → Good understanding of trade-offs between sustainability dimensions
- → All targets met simultaneously
- → The only approach able to ensure nutritional adequacy
- → Can be applied to different type of dietary data (meals, population diet, individual diets...)

Limitations of Approach n°4

- → When targets are too severe or incompatible: no solution (or unrealistic ones)
- → Deviation from existing diets => acceptability not ensured


Main advantages of each approach

n°1: Designing theoretical diets based on *a priori* scenario

→ Communication first

n°2: Describing existing diets

→ Understanding trade-offs

n°3: Identifying the best existing diets

→ Only approach to guarantee acceptability (i.e. individuals already consume this way)

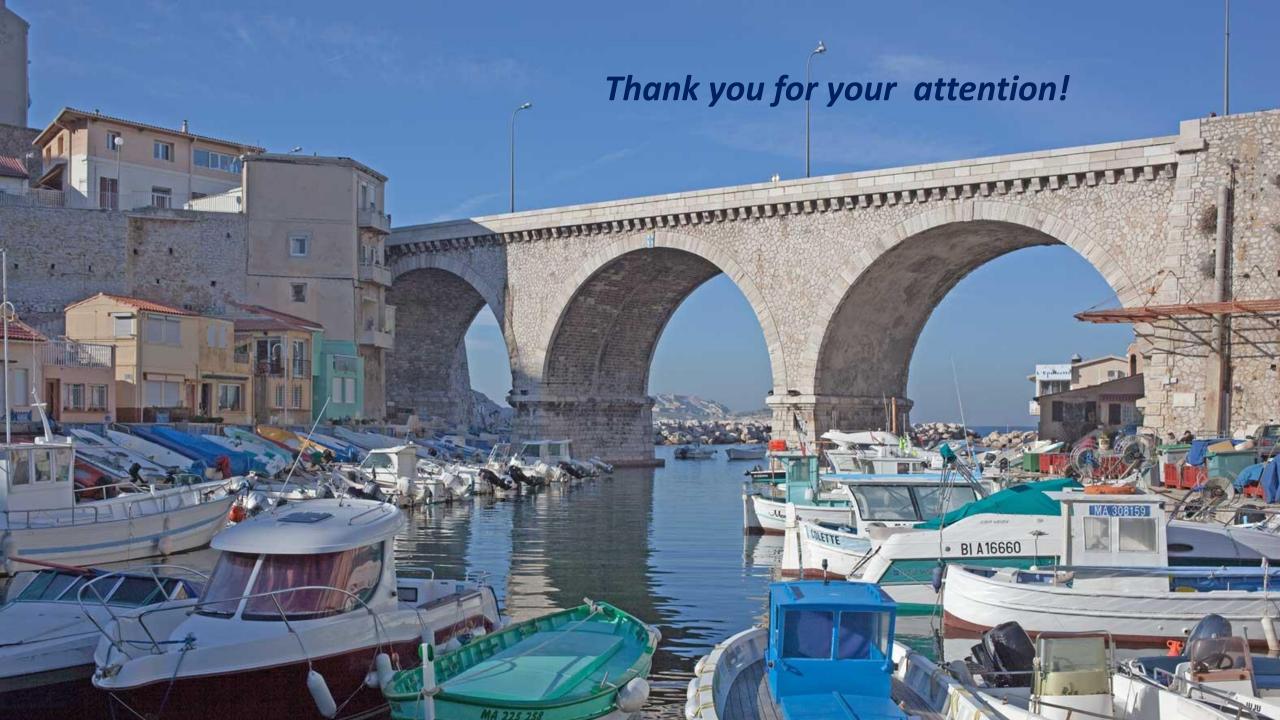
n°4: Designing theoretical diets without a *priori*

$$\min \sum_{j=1}^{n} c_j x_j = Z$$

$$\sum_{j=1}^{n} a_{ij} x_j = b_i \quad , i = 1, ..., m$$

$$x_j \ge 0 \quad , j = 1, ..., n$$

→ Only approach
to guarantee the
simultaneous and
strict respect of
many different goals


Common limits

- → Food consumption data: their availability, representativeness and precision limit and orient the type of approach
- → Food databases (nutrition, environment, price, contaminants...): their availability and accuracy determine the robustness and relevance of the results.
- → Genericity can't be avoided

Common conclusions

- → nutritional quality and low environmental impacts not spontaneously aligned
- → it is possible to reduce environmental impacts while improving nutritional quality
- → meat should be reduced ('global North' studies)
- → entire food categories don't need to be eliminated
- → balance between animal- and plant-based products needed for nutrition

Well-known messages about
diversity and moderation
are still relevant for sustainable diets

