

An Update on lodine in the UK diet: The Role of Milk

27th April 2018

Alison Yeates A.Yeates@ulster.ac.uk

'Global Excellence in Nutrition Research & Education'

Why do we need iodine?

- Iodine is a key component of the thyroid hormones (TH) Thyroxine (T₄) and Triiodothyronine (T₃)
- TH are needed for optimal reproductive function, metabolic regulation, foetal growth and brain development
- Adequate dietary iodine is particularly important in pregnancy and infancy

Role in neurodevelopment

Gestational period

1 st trimester	2 nd trimester	3 rd trimester
	 Brain development — 	
Weeks 3 - 12:		
Foetal thyroid gland inactive	2	, but reliance is still on odine supply
Maternal T ₄ needed for neurone proliferation and myelination		

- Inadequate supply of iodine and hence, thyroid hormones, in early pregnancy can potentially have irreversible and long-lasting adverse effects to cognitive development
- Adequate iodine stores pre-conception are particularly important

Iodine Deficiency

Causes of iodine deficiency

- Iodine is cycled in the atmosphere between seawater and rainfall
- Low soil concentrations are present in areas that are mountainous, far from the sea and prone to flooding
- Malnutrition, co-existing micronutrient deficiency and intake of goitrogens can all aggravate iodine deficiency in these regions

Consequences of iodine deficiency

	Health consequences of lodine D	Deficiency
All ages	Goitre Hypothyroidism	
Foetus	Spontaneous abortion Stillbirth Congenital anomalies Perinatal mortality	
Neonate	Endemic cretinism Infant mortality	
Child	Impaired mental function Delayed physical development Iodine-induced hyperthyroidism	
Adults	Impaired mental function Iodine-induced hyperthyroidism	

Adapted from: Vanderpump, (2014) *Clinical Medicine* **14** (6), s7-s11.

Assessing iodine status

 In healthy adults, 90% dietary iodine is excreted in urine with the rest taken up by the thyroid

d'	

- Urinary iodine concentration (UIC), measured in spot urine samples, is the recommended biomarker for assessing recent dietary iodine intake in a population (median UIC µg/L)
- Adjusting for urinary creatinine reduces the effect of variation in urine volume (iodine:creatinine µg/g)

WHO, UNICEF & ICCIDD (2007) Assessment of IDD and Monitoring their Elimination, 3rd ed, Geneva: WHO

Classification of deficiency

	Median UIC µg/L	Iodine status
School-aged	<20	Severe deficiency
children, non-	20 - 49	Moderate deficiency
pregnant and non-lactating	50 – 99	Mild deficiency
adults	>100	Adequate
	(>110 µg/g urinary iodine:creatinine)	
Pregnancy	<150	Insufficient
	>150	Adequate
	(>183 µg/g urinary iodine:creatinine)	

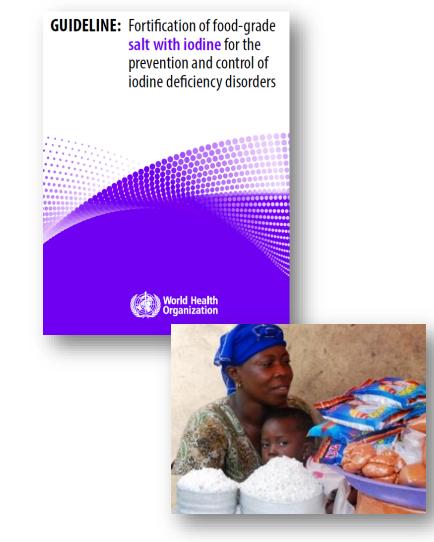
WHO, UNICEF & ICCIDD (2007) Assessment of IDD and Monitoring their Elimination, 3rd ed, Geneva: WHO

Consequences of mild-to-moderate iodine deficiency in pregnancy

- Australia: 9 y old children, whose mothers had a gestational UIC <150µg/L throughout pregnancy, had poorer language skills (n=228)¹
- ALSPAC Study, UK: Follow-up of 8-9 y old children found those whose mothers with urinary iodine:creatinine <150µg/g in their first trimester had lower IQ and reading skills (n=1040)²
- Generation R Study, Netherlands: Children born to mothers with low iodine: creatinine <136µg/g in early pregnancy had mild alterations in executive functioning at 4 y of age (n=692)³

¹ Hynes *et al,* (2013) *J Clin Endocrinol Metab*, **98** (5), 1954-1962; ² Bath *et al,* (2013) *Lancet* **382** (9889), 331-7; ³ van Mil *et al,* (2012) *J Nutr* **142**, 2167-2174

Dietary Requirements & Sources in the UK

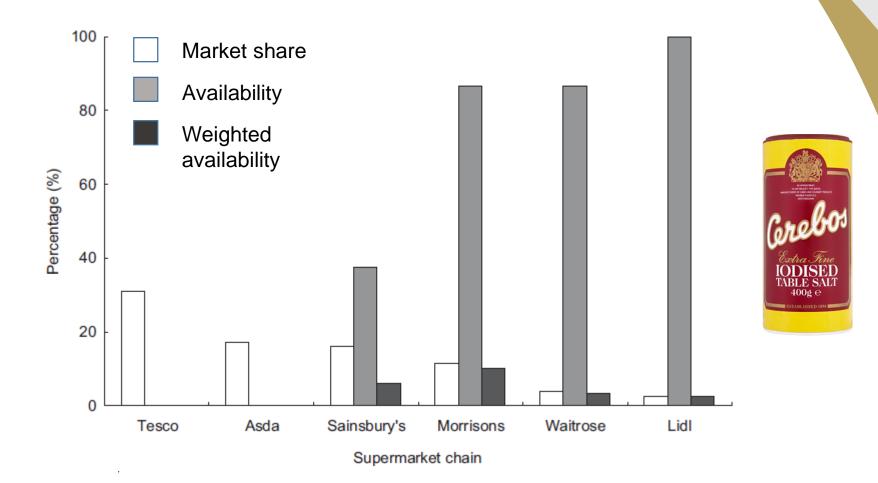

Dietary Requirements

Recommended Daily Amounts - µg/d

	Worldwide WHO Recommended Nutrient Intake ¹	Europe EFSA Adequate Intake ²	USA IOM Recommended Daily Allowance ³	UK DH Recommended Nutrient Intake ⁴
Adults 19-50 yrs	150	150	150	140
Pregnant women	250	200	220	+ 0 i.e. 140
Lactating women	250	200	290	+ 0 i.e. 140

¹World Health Organization/ Food and Agriculture Organization (2004); ²European Food Safety Authority (2008); ³Institute of Medicine (2001); ⁴Department of Health, Committee on Medical Aspects of Food Policy (1991)

Dietary Sources of Iodine



- Universal salt iodisation (USI) remains the key strategy to eliminating IDD worldwide¹
- Implemented in 128 countries with 70% households worldwide having access¹
- Successful in reducing:
 - Goiter
 - Cretinism

¹WHO, UNICEF & ICCIDD (2007) Assessment of IDD and Monitoring their Elimination, 3rd ed, Geneva: WHO; ²Pearce, et al (2013) Thyroid 23(5), 523-528

lodised salt in the UK

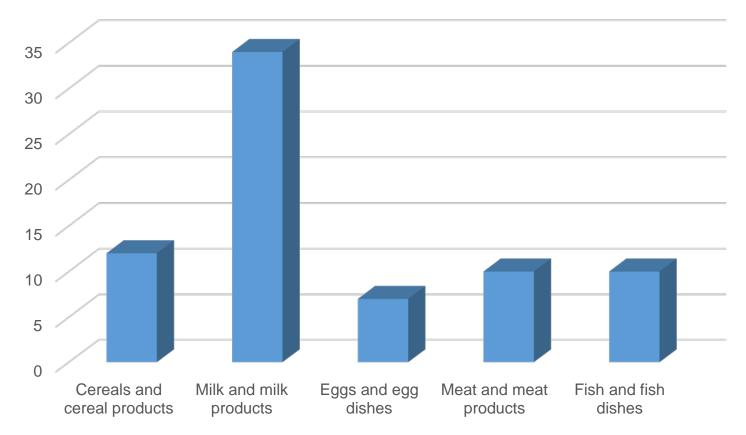
Availability is low for UK households

Bath et al, (2014) Public Health Nutr 17(2), 450-4

Food Sources

For populations without iodised salt

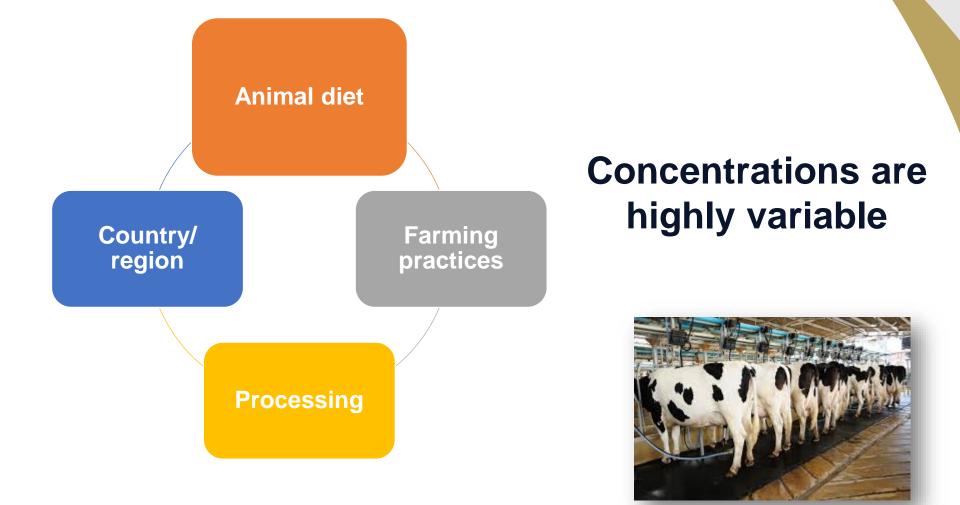
Foods of marine origin



Milk and dairy products

Contribution of UK foods to average daily iodine intakes

% Contribution to average daily iodine intakes



Bates *et al*, (2017) National Diet and Nutrition Survey (NDNS) Results from Years 7 and 8 (combined) of the Rolling Programme (2014/15 to 2015/16). Department of Health, Available from www.gov.uk/government/statistics/ndns-results

The Role of Cow's Milk

Cow's milk as a source of iodine

Iodine concentrations in cow's milk produced in Northern Ireland

- Milk samples were collected weekly from May 2013 April 2014 from two large NI creameries (*n*=376):
 - Raw milk pre-homogenisation
 - Pasteurised: Whole, semi-skimmed and skimmed
- Iodine was analysed (ICP-MS, LGC Group) to assess the effect of various factors to iodine concentrations

Comparing NI milk iodine concentrations with the rest of the UK

Study	Region	Ν	Milk type	Mean ± SD (µg/kg)	Season
O'Kane <i>et al</i> , (2018)	NI	376	Semi-skimmed, from processor	476 ± 64	April '13 – May '14
Stevenson <i>et</i> <i>al</i> , (2017)	Reading	48	Semi-skimmed, retail	427 ± 16	July-Dec '15
Payling <i>et al</i> , (2015)	Reading	12	Semi-skimmed, retail	474 ± 25	January '14
Bath <i>et al</i> , (2012)	SW. England	80	Semi-skimmed, retail	256 (142, 164)*	June-Aug '09
Food Standards Agency (2008)	UK wide	145	Semi-skimmed, retail	300	Ave of summer & winter

* Geometric mean (95% Cl)

Factors affecting concentrations in NI milk

		lodine concentration (µg/kg)		
Milk type	п	Mean	SD	Р
Pasteurised [†]	36	475.9	63.5	0.275
Unpasteurised [‡]	12	451.7	71.9	0.275
Skimmed	12	472.6	76.0	
Semi-Skimmed	12	466.6	62.6	0.696
Whole	12	488.5	53.3	
Winter	9	498.1 ^{a,b}	30.6	
Spring	9	534.3 ^a	53.7	<0.001
Summer	9	437.4 ^{b,c}	48.9	<0.001
Autumn	9	433.6 ^c	57.8	

† Mean of skimmed, semi-skimmed and whole milk samples

‡ Samples were collected pre-pasteurisation and pre-homogenisation

^{a,b,c} values within a column with different superscript letters represent significance (P< 0.05)

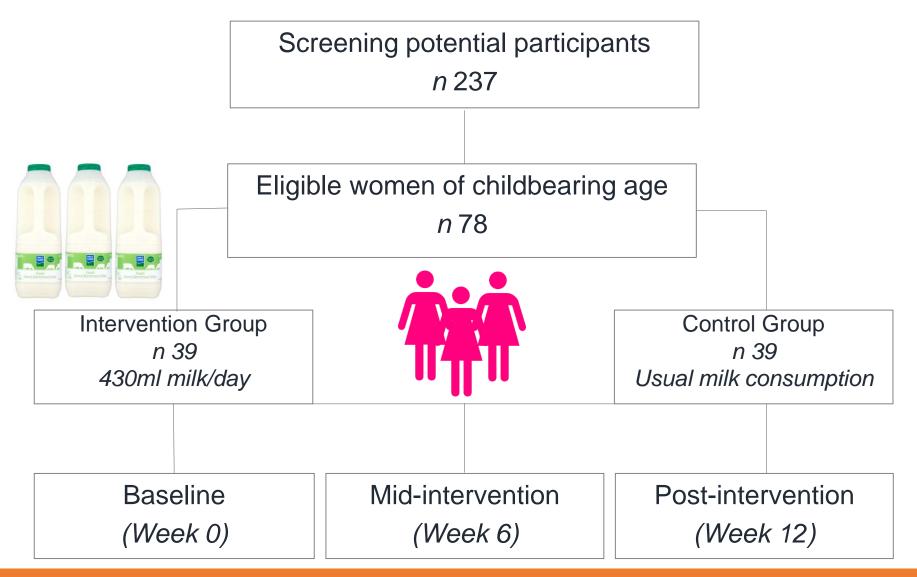
Implications for dietary intakes

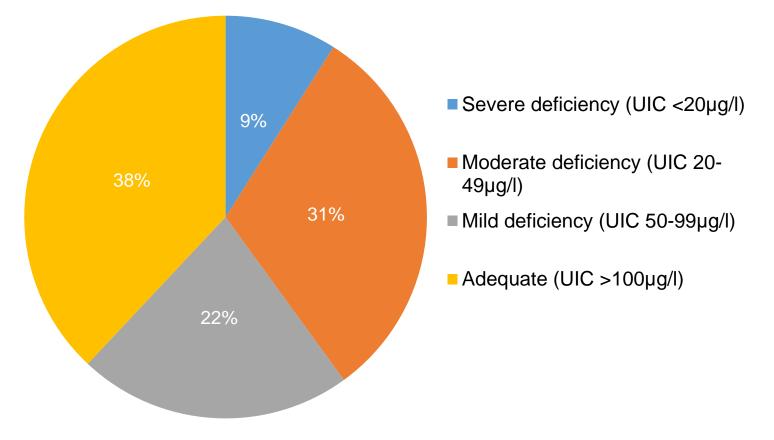
- At these concentrations, NI milk could be contributing more to daily iodine intakes in all population groups than recognised by previous estimates¹
- Season is likely to influence population intakes
- Caution is needed when using food composition data to estimate iodine intakes^{2,3}
- Results emphasise the importance of monitoring milk concentrations and understanding sources of variability

¹O'Kane *et al,* (2018) *Nutrients* **10**, 287 ²Hennessy *et al,* (2017) *Eur J Clin Nutr* **72**, 410-419; ³Carriquiry *et al*, (2016) *Am J Clin Nutr* **104**, 877S-887S

Can increasing milk consumption

improve iodine status?




O'Kane et al, (2018) J Nutr 148, 401-408

Selenium and Iodine in Milk Intervention Study (SIMI)

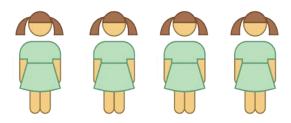
Biological, anthropometric and dietary data

Prevalence of iodine deficiency

N= 78 women of childbearing age (median 26.5 years)

Results of milk intervention

- Following a modest increase in milk consumption (up to 430ml/d):
 - Iodine status ↑ by 35% (iodine:creatinine increased from 70 to 121µg/g)
 - Levels of iodine deficiency \downarrow by 23%
 - No adverse effects on weight, BMI, blood pressure or waist:hip ratio


Deficiency in the UK: An Update

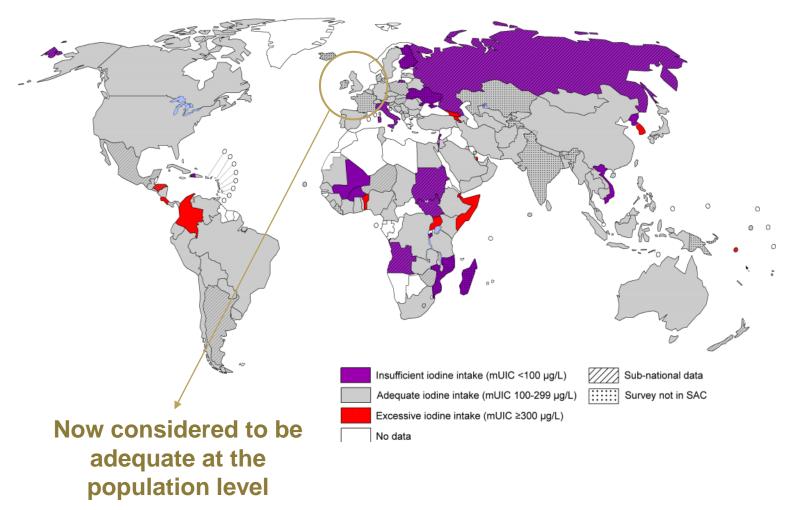
National survey of UK schoolgirls

Vanderpump *et al*, (2011) *Lancet* **377** (9782), 2007-12

- Spot urine samples collected from 737 schoolgirls (14-15 y)
- 9 centres across the UK
- Median UIC = $80.1 \mu g/L$ indicating mild deficiency
- UIC was lowest in the summer months, among those with the lowest milk intakes and in Belfast area
- Raised significant public health concern

68% of 14-15 year old girls in UK iodine deficient - health risk for them and their future offspring

Iodine status in the UK: An Update


Urinary iodine concentration µg/L in NDNS spot urine samples

		Adults (19- 64 yrs)		ildbearing age 19 yrs)
	Year 6 (2013/14)	Years 7 – 8 (2014/15 2015/16)	Year 6 (2013/14)	Years 7 – 8 (2014/15 2015/16)
Median	119	105	117	102
20 th – 80 th percentile	63 – 208	59 – 188	65 - 198	54 - 193
% below 100µg/L	41	46	40	47
% below 50µg/L	13	14	11	17
% below 20µg/L	2	2	1	0

What about the UK?

Global Scorecard of Iodine Nutrition 2017

Based on median urinary iodine concentration (mUIC) in school-age children (SAC) and adults

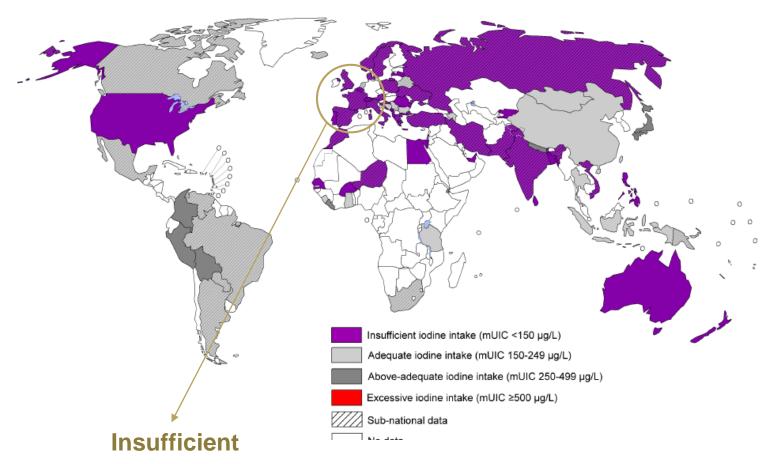
www.ign.org/scorecard

Iodine status in the UK: An Update

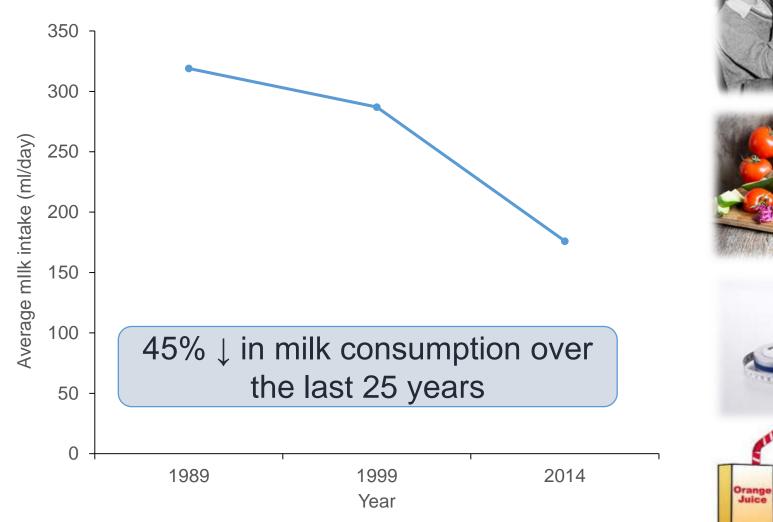
Urinary iodine concentration µg/L in NDNS spot urine samples

		dults 64 yrs)		ildbearing age 19 yrs)
	Year 6 (2013/14)	Years 7 – 8 (2014/15 2015/16)	Year 6 (2013/14)	Years 7 – 8 (2014/15 2015/16)
Median	119	105	117	102
20 th – 80 th percentile	63 – 208	59 – 188	65 - 198	54 - 193
% below 100µg/L	41	46	40	47
% below 50µg/L	13	14	11	17
% below 20µg/L	2	2	1	0

Recent studies of iodine status in the UK: Pregnant women


Authors	n	Gestational weeks	Season of sampling	Median UIC µg/L*
Barnett <i>et al</i> , (2002)	433	11.5	-	137
Pearce <i>et al</i> , (2010)	480	<16	All year	117
Bath <i>et al</i> , (2013)	1040	<13	All year	91.1
Bath <i>et al</i> , (2014)	100	12	Summer	85.3
Furmidge-Owen et al, (2014)	228 222 212	12 20 35	All year	42.0 52.0 69.4

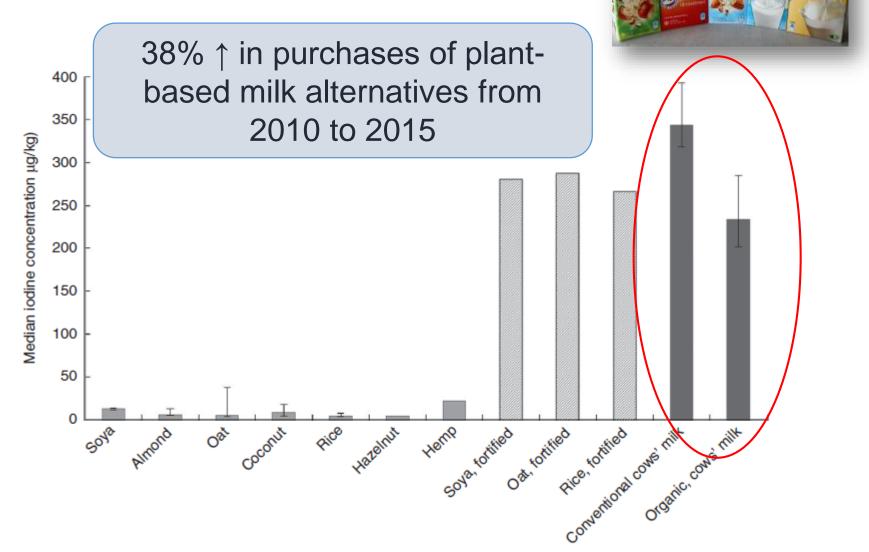
* WHO criteria for iodine adequacy in pregnancy: ≥150 µg/L


UK Pregnant Women

Global Scorecard of Iodine Nutrition 2017

Based on median urinary iodine concentration (mUIC) in pregnant women

Declining milk consumption



Department for Environment, Food and Rural Affairs (DEFRA), (2017); Bates *et al, (*2016); Mintel, (2017)

Alternative milk drinks

alpro

Bath *et al,* (2017) *Br J Nutr* **118**, 525-532; DEFRA (2017) Family Food Datasets. Available at: www.gov.uk/government/statisticaldata-sets/family-food-datasets; Srednicka-Tober *et al,* (2016) *Br J Nutr* **115**, 1043- 1060; Bath & Rayman, (2016) *Br J Nutr* **116**, 3-6

Lack of Awareness

- An Ulster-conducted survey of 520 UK females reported poor iodine knowledge and awareness. Iodine knowledge was greatest among those with intakes above the RNI¹
- Just 12% of Glaswegian pregnant women surveyed were aware of the need for greater iodine²

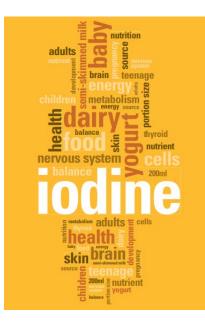
¹ O'Kane *et al,* (2016) Br J Nutr **116**(10), 1728- 1735 ² Combet *et al,* (2015) Br J Nutr **225**(1), 208-17

How can we improve iodine intakes?

Is supplementation the answer?

- WHO recommend that, in countries where USI is not implemented, supplements should be given to pregnant women
- However, there are as yet no clear benefits to supplementing pregnant women in areas of mild-tomoderate deficiency¹⁻⁵

- Potential risk of thyroid disorders and autoimmunity^{6,7}
- Only 50% of pregnancies in the UK are planned


¹Berbel *et al*, (2009); ²Velasco *et al*, (2009); ³Santiago *et al*, (2013); ⁴Zhou et al, (2013); ⁵Gowachirapant *et al*, (2017); ⁶Rebagliato *et al*, (2013); ⁷Zimmermann & Boelart (2015)

Considerations for future research

- Regular monitoring of iodine status at the population level, particularly in pregnant women
- Improved analysis of food sources and understanding of the factors influencing food composition variability and the impact on dietary assessment
- Greater evidence required to determine the effects of supplementing pregnant women with mild-tomoderate deficiency on child cognitive outcomes

Education

 Education campaigns aimed at young women and also, health professionals who provide information to pregnant women

The Dairy Council www.milk.co.uk

BDA lodine Fact Sheet www.bda.uk.co.uk

Promotion of food sources

- Promotion of most important food sources
- Role of dairy industry and health promotion bodies
- Conduct research aimed at improving knowledge and overcoming common misperceptions of milk as an unhealthy food

Thank you!

Acknowledgements

- Ulster University
- Dr Maria O'Kane
- Dr Kirsty Pourshahidi
- Dr Maria Mulhern
- Professor JJ Strain
- Funders
- DAERA
- The Dairy Council for Northern Ireland
- Collaborators
- LGC Standards
- Dr Sarah Bath and Dr Margaret Rayman, University of Surrey

- Students
- Emer Mackle
- Edel Fitzgerald
- Study Participants

