Exercise, Hormones, and Disease Prevention

Wendy M Kohrt, PhD Professor of Medicine and Obstetrics & Gynecoloegy Division of Geriatric Medicine Nancy Anschutz Chair in Women's Health Research University of Colorado – Anschutz Medical Campus

Outline

- 1. Potential consequences of the loss of gonadal function – working model
- 2. Metabolic consequences of the loss of estrogens preclinical
 - Mitigation by exercise
- 3. Metabolic consequences of the loss of estrogens clinical
 - Mitigation by exercise

Outline

- 1. Potential consequences of the loss of gonadal function – working model
- 2. Metabolic consequences of the loss of estrogens preclinical
 - Mitigation by exercise

Body Weight in Mice and Rats OVX vs Sham

Adapted from: Witte MM et al. General Compar Endocrinol 166:520, 2010

Body Weight in Rats OVX-AL vs OVX-PF vs Sham

Adapted from: Witte MM et al. General Compar Endocrinol 166:520, 2010

Locomotor Activity in Mice and Rats OVX vs Sham

Adapted from: Witte MM et al. General Compar Endocrinol 166:520, 2010

Wheel-running Distance in Sham and OVX Mice

From: Gorzek JF et al. Med Sci Sports Exerc 39:248, 2007

Effects of OVX and E₂ Add-back in Mice

From: Camporez JP et al. Endocrinol 154:1021, 2013

Effects of Programmed Exercise on Adiposity and Insulin Action

Adapted from: Pighon A et al. Climacteric 13:238, 2010

Effects of OVX:

- decreased physical activity
- decreased resting metabolic rate
- Increased energy intake (some species)
- Increased abdominal fat gain
- metabolic dysfunction

Prevented by E₂ treatment and by exercise

Outline

- 1. Potential consequences of the loss of gonadal function – working model
- 2. Metabolic consequences of the loss of estrogens preclinical
 - Mitigation by exercise
- 3. Metabolic consequences of the loss of estrogens clinical
 - Mitigation by exercise

Ovarian Hormone Suppression (GnRH_{AG}; 5 months) With Placebo or E₂

2-group model	GnRH _{AG} +PL n=35	GnRH _{AG} +E ₂ n=35
Age, y	36 ± 2	35 ± 2
Wt, kg	74 ± 3	76 ± 3
BMI, kg/m ²	28 ± 2	28 ± 1
FM, kg	28 ± 2	28 ± 3
FFM, kg	46 ± 1	48 ± 1

Ovarian Hormone Suppression (GnRH_{AG}; 5 months) + Placebo or E_2 , \pm Resistance Exercise

4-group model	GnRH _{AG} +PL n=35		GnRH _{AG} +E ₂ n=35	
	-Ex n=23	+Ex n=12	-Ex n=23	+Ex n=12
Age, y	36 ± 2	36 ±2	34 ± 2	36 ±2
Wt, kg	74 ± 4	75 ± 4	76 ± 4	78 ± 5
BMI, kg/m ²	28 ± 1	28 ± 2	28 ± 1	29 ± 2
FM, kg	27 ± 3	28 ± 3	28 ± 3	28 ± 3
FFM, kg	47 ± 1	47 ± 2	48 ± 1	50 ± 2

GnRH_{AG}+PL vs GnRH_{AG}+E₂ 5-mo Changes in Body Composition (DXA)

GnRH_{AG}+PL vs GnRH_{AG}+E₂ 5-mo Changes in Body Composition (CT)

GnRH_{AG}, +/- E₂, +/- Exercise Training 5-mo Changes in Body Composition (DXA)

Shea K et al. *Menopause* 22:1045, 2015

GnRH_{AG}+PL vs GnRH_{AG}+E₂ 5-mo Changes in Energy Expenditure

Melanson EL et al. J Appl Physiol 119:975, 2015

GnRH_{AG}+PL vs GnRH_{AG}+E₂ vs GnRH_{AG}+PL+Ex 5-mo Changes in Energy Expenditure

Melanson EL et al. J Appl Physiol 119:975, 2015

GnRH_{AG}+PL vs GnRH_{AG}+E₂ 5-mo Changes in Spontaneous Physical Activity

Ovarian Suppression – Body Composition

Figure 4. Changes in fat mass and fat-free mass in response to 12 to 24 weeks of gonadotropin releasing hormone therapy.

Estrogen Status and Energy Homeostasis

- Preclinical (OVX) and clinical studies (GnRH_{AG}) provide consistent evidence for the role of estrogens in the regulation of energy balance
- The loss of estrogens (OVX, GnRH_{AG}) promotes fat gain through multiple system-level mechanisms
 - decreased resting metabolic rate
 - decreased physical activity
 - increased energy intake (some species)

Estrogen Status and Energy Homeostasis - Mitigation by Exercise -

- In animals, exercise prevents the effects of OVX to increase abdominal adiposity and metabolic dysfunction
- In women, resistance exercise attenuates the loss of lean mass during ovarian suppression, but not the increase in abdominal adiposity or decrease in RMR.
- Endurance exercise may attenuate total fat gain, but not in central regions, and may not attenuate the loss of lean mass.

W Kohrt, PhD **R Schwartz, MD R** Boxer, MD S Creasy, PhD K Gavin, PhD K Hildreth, MD K Jankowski, PhD H Lum, MD E Melanson, PhD K Moreau, PhD Y-M Park, PhD **C** Rynders, PhD C Swanson, MD S Wherry, PhD

R01 AG018198 R21 DK092718 P50 HD073063 U01 TR001082 P30 DK048520

UNIVERSITY OF COLORADO ANSCHUTZ MEDICAL CAMPUS

Menopausal HT and CVD Risk

Hsia J et al. Arch Intern Med 166:357-365, 2006

Menopausal HT and CVD Risk

Hsia J et al. Arch Intern Med 166:357-365, 2006

Menopausal HT and CVD Risk

Hsia J et al. Arch Intern Med 166:357-365, 2006